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Abstract
During the past decade of study in evolutionary developmental biol-
ogy, we have seen the focus shift away from the stunning conserva-
tion of form and function between distantly related taxa toward the
causal explanation of differences between closely related species. A
number of fish models have emerged at the forefront of this effort to
dissect the developmental genetic and molecular basis of evolution-
ary novelty and adaptation. We review the highlights of this research,
concentrating our attention on skeletal morphology (cranial and
postcranial), pigmentation patterning, and sex determination. Thus
far, the genes involved in adaptation among fishes belong to well-
characterized molecular pathways. We synthesize the current state
of knowledge to evaluate theories about the interplay between de-
velopment and evolution. General rules of evolutionary change have
not materialized; however, the field is wide open, and fishes will likely
continue to contribute insights to this central biological question.
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Melanophore:
melanin-containing
pigment cell of ectothermic
vertebrates that is derived
from the neural crest

Forward genetics:
approach that starts with a
phenotype of interest and
then tries to identify genetic
variants that are associated
with the phenotypic
differences

Reverse genetics:
approach that starts by
creating or identifying
mutations in a gene of
interest and then assays the
phenotype of individuals
carrying the mutation

INTRODUCTION

Fishes, Novelty, and How Development Works

The publication in December 1996 of an entire issue of Development dedicated to the
zebrafish embryo and its embryogenesis changed the way evolutionary biologists think
about fishes. The description of mutants in pathways affecting most aspects of verte-
brate morphology (brains, eyes, jaws, fins, pigment) provided resounding evidence of
the interplay between genes and development on a comprehensive scale. The simple
figures used to document phenotypes (e.g., cleared and stained embryos lacking jaw
bones or with duplicated cartilages, fishes without melanophores) provided visual
compendia of developmental diversity. Students with favorite traits now had favorite
mutants. The landmark issue of Development was particularly inspirational to those
interested in evolution. The zebrafish mutants, first the domain of biomedicine, con-
tributed to an undercurrent of discovery that adaptation (when development works)
was just the flip side of disease (when development fails). Comparative biologists rec-
ognized that understanding the key to complex phenotypes and evolutionary novelty,
encoded in the genome and unveiled through the developing embryo, was a tractable
research objective.

This mindset was accompanied by major challenges. Conceptually, mutant screens
are an imperfect metaphor for the identification of genotype-phenotype associations
in nature. First, the classical experimental paradigm of forward genetics has sought
to minimize complexity by isolating the effects of single mutations. Second, most ze-
brafish mutants were embryonic lethals; they never developed to function as adults.
Subsequently, biologists have inferred how development works by studying how de-
velopment fails. This approach has advanced our knowledge of gene function, but
has also underscored the notion that genes do not operate in a vacuum, that environ-
mental and genomic context matters. As such, a major and complementary objective
of current research is to understand the molecular basis of natural diversity. Notably,
understanding the origin of biological diversity was named one of the “25 Hard Ques-
tions” by Science magazine in July 2005, and “Evolution in Action” was Science’s 2005
Breakthrough of the Year.

Teleost fishes represent a unique assemblage in which to study the genetics of
adaptation and evolutionary novelty, or how development works. First, the group
contains bona fide model organisms (Danio, Takifugu, Tetraodon, Oryzias), with re-
search programs in forward and reverse genetics, molecular biology, and genomics
providing information, hypotheses, and technical insight. Second, the species rich-
ness and diversity of fishes are unrivaled among vertebrates. Closely related species
differ in a wide range of traits, many of which we explore below. Numerous natural
lineages are amenable to genetic and developmental analysis because barriers to hy-
bridization are minimal or absent and embryos are easy to manipulate (e.g., danios,
sticklebacks, cichlids). Understanding the genetics of development in natural lineages
would provide theoretically novel insights into gene function because (a) new genes,
not identified in mutant screens, might be involved and (b) new mutations, compatible
with adult viability, would likely play a role.
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Neural crest: a pluripotent
population of embryonic
precursor cells that
contributes to numerous
vertebrate traits

Here, we review recent advances in the developmental genetics of adaptation in
teleost fishes. We focus on three types of traits: skeletons (including craniofacial and
postcranial elements), pigmentation, and sex (gender) determination. These traits
have received considerable attention from researchers and fit together conceptually.
Skeletal elements and pigment patterns have their cellular origin in the vertebrate
cell type called the neural crest (Gans & Northcutt 1983, Hall 1999). Pigment pat-
terns and skeletal variants are sometimes linked to sex chromosomes, and theoretical
population genetic models of adaptive speciation predict linkage among these trait
types (reviewed in Bolnick & Fitzpatrick 2007). Some of the evolutionary lineages
and the traits we highlight have been reviewed elsewhere in the past few years (Cresko
et al. 2007, Kazianis 2006). Our goal is to describe and summarize this vast primary
literature to examine if diverse adaptations in different fish lineages share common
developmental pathways or common gene regulatory logic. We integrate these data to
address hypotheses that codify the rules of evolutionary development among closely
related organisms.

SKELETONS

Traveling Light: Adaptation via Loss

Recent work has yielded considerable insight into the developmental genetics of
trait loss in fishes. Assorted lineages have lost features of the craniofacial (i.e., teeth)
and postcranial skeletons (i.e., ribs and fins), as well as body armor, scales, eyes, and
pigmentation (see below) (Table 1; Figure 1). Research to date suggests that trait
loss is controlled by a small number of genes of large effect and high penetrance;
further study is required to determine if this is a general rule.

Table 1 Summary of genes involved in adaptation among different fish lineages

Trait Lineage Gene Dataa Gene typeb

Pelvic fin loss Pufferfishes hoxd9a T I/O
Pelvic fin loss Stickleback pitx1 Both I/O
Eye loss Cavefish shh, twhh T Plug-in
Pigment loss Cavefish oca2 Both DGB
Armor loss Stickleback eda G Plug-in
Tooth loss Cypriniforms FGF, dlx2 T Plug-in
Jaw function Cichlid bmp4 Both Plug-in
Sex determination Medaka dmy G I/O

aData column specifies the type of data [genetic (G), transcriptional (T), or both] used to demonstrate
the relationship between genotype and phenotype. Genetic data is an association between genotype and
phenotype found by genetic linkage or genetic association analysis. Transcriptional data is an association
between genotype and phenotype found by showing a correlation between a phenotypic difference and a
difference in a gene’s expression pattern.
bGene type column assigns genes according to Davidson & Erwin’s (2006) terminology. DGB,
differentiation gene battery; I/O, input/output.

www.annualreviews.org • Developmental Genetics of Adaptation in Fishes 657

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

00
7.

38
:6

55
-6

81
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 J

ef
fr

ey
 S

tr
ee

lm
an

 o
n 

12
/1

7/
07

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV328-ES38-26 ARI 24 September 2007 8:43

10 mm

10 mm

a

b

c

d

e

f

g

h

Figure 1
Variation in skeletal morphology and anatomy among model teleosts. (a) Placidochromis milomo
(Lake Malawi) and (b) Lobochilotes labiatus (Lake Tanganyika), demonstrating parallel evolution
of cartilaginous fleshy lips, function unknown. (c) Rhamphochromis esox, a piscivore from Lake
Malawi with a highly kinematic jaw and unicuspid teeth. (d ) An oral view of Pseudotropheus
elongatus, an algae eater from Lake Malawi with multiple rows of multicuspid teeth. (e) Eyed
and pigmented versus ( f ) eyeless and albino tetras, Astyanax. ( g, h) Variation in body armor
and pelvic spines among Alaskan sticklebacks. Photos of tetras and sticklebacks are courtesy of
Yoshiyuki Yamamoto and William Cresko, respectively.

Quantitative trait locus
(QTL): a genomic region
that has been shown by
linkage mapping studies to
harbor genetic variation that
contributes to segregating
phenotypic variation

Understanding the developmental genetic basis of adaptation builds on decades
of natural history, field ecology, and evolutionary biology. For instance, Northern
Hemisphere stickleback fish have independently colonized freshwater habitats from
marine ancestors soon after the last glacial maximum (∼10,000 years ago). Riverine,
lacustrine, and stream populations have evolved numerous adaptations, including
changes in body size, habitat use, gill raker number, and the reduction of body armor
[i.e., scales that are modified to form bony plates, as well as pelvic and dorsal spines
(Bell & Foster 1994)] (Figure 1). Peichel et al. (2001) mapped the genetic basis of
pelvic and armor reduction in backcross progeny of lacustrine benthic versus limnetic
threespine sticklebacks from Priest Lake, British Columbia. A single quantitative
trait locus (QTL) for pelvic spine length was located on chromosome 8, and QTL
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Percent variance
explained (PVE): the
amount of segregating
phenotypic variation
explained by a particular
QTL

for body armor (plates) were located on chromosomes 13 and 26. Each of these
genomic regions explained a substantial portion of phenotypic variation in the focal
trait [percent variance explained (PVE) = ∼25%].

Subsequent to this study, numerous reports have refined the story for each trait.
Colosimo et al. (2004) used F2 fishes from an intercross of marine versus Paxton
Lake, British Columbia, parents to document a QTL of major effect (PVE > 75%)
for body armor on chromosome 4, with four additional minor effect loci on separate
chromosomes. The major locus for armored plates on chromosome 4 also segregated
in a California stream population. This locus was later identified as ectodysplasin (eda)
by positional cloning, linkage disequilibrium mapping, and transgenesis (Colosimo
et al. 2005). Notably, eda low-plate alleles segregate at low frequency in marine high-
plated ancestral populations, explaining the parallel loss of armor in most freshwater
lineages (Colosimo et al. 2005).

Shapiro et al. (2004) used a similar cross-design to identify a major QTL for pelvic
reduction on stickleback chromosome 7, with four additional minor effect loci on dif-
ferent chromosomes. Mapping of candidate genes and in situ hybridization strongly
suggest that regulatory mutations in pitx1 (paired-like homeodomain transcription
factor 1) are responsible for this phenotype. Similarly, genetic complementation anal-
ysis implicated pitx1 in the pelvic reduction of other freshwater threespine stickleback
populations (Shapiro et al. 2004) and distantly related (common ancestor at least 10
mya) ninespine stickleback populations (Shapiro et al. 2006). Cresko et al. (2004) stud-
ied the genetics of bony armor loss among Alaskan freshwater threespine stickleback
populations and demonstrated parallel Mendelian control of both pelvic and armor
phenotypes. Alaskan sticklebacks segregated for a pelvic reduction gene on chromo-
some 7 (likely pitx1), and armor phenotypes mapped to the eda locus on chromosome
4 (Miller et al. 2007).

Other fish lineages show analogous loss of scale or pelvic structures; strikingly,
these phenotypes result from alterations in the same developmental pathways identi-
fied in stickleback. Kondo et al. (2001) reported that the spontaneous medaka mutant
rs-3, which lacks scales, is encoded by the receptor for ectodysplasin (edar). Pelvic
fin loss in pufferfishes is accompanied by altered expression of the limb-positioning
marker hoxd9a, which is upstream of pitx1 (Tanaka et al. 2005). Finally, additional fish
groups are characterized by the loss of morphological features, from eyes to oral jaw
teeth. Blind cavefishes (Astyanax) possess eyes that degenerate during development
(Figure 1). Cave populations are characterized by expanded sonic hedgehog (shh)
and tiggy-winkle hedgehog (twhh) expression at the embryonic midline when com-
pared to their surface-dwelling eyed ancestors (Yamamoto et al. 2004). Zebrafish and
other cypriniform fishes lack teeth on their oral jaws. This may result from altered
fibroblast growth factor (FGF) signaling through dlx2 in oral epithelium (Stock et al.
2006).

Fish Jaws and Dentitions: Elaboration and Complexity

Detailed study of trait loss in fishes provided some of the first evidence that genetic
mapping and assays of gene expression could be used to understand the molecular
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control of natural adaptations. Of course, trait loss may be a special case of adaptation:
what about the more complex morphologies in which individuals differ in the subtler
aspects of shape, size, and function? The natural history of fish feeding ecology,
functional morphology, and diversity provided a place to begin. Notable features of
the fish craniofacial skeleton include (a) two sets of toothed jaws (oral and pharyngeal)
elaborated to (sometimes) bizarre extremes (Figure 1), (b) dentitions on jaws and
numerous other bony elements replaced continuously through development, and
(c) a long and perhaps dubious history of these traits as markers of evolutionary
relationships.

Cichlid fishes have figured prominently in studies attempting to identify the
developmental genetic basis of craniofacial adaptation, largely because they repre-
sent closely related species with a wide range of trophic and dental morphologies
(Albertson & Kocher 2006). Albertson et al. (2003) mapped QTL for craniofacial
morphology in the F2 of a cross between two Lake Malawi cichlids with divergent
feeding strategies. Genes of large effect (10%–25% PVE) for multiple craniofacial
phenotypes mapped to common intervals of chromosomes 1, 2, and 16 [reassigned
to chromosomes 7, 15, and 19 after comparison to the more extensive tilapia cich-
lid map (Lee et al. 2005, Streelman & Albertson 2006)], leading to speculation that
trait linkage on chromosomes might facilitate the rapid and replicative evolution
of jaw design among rift lake cichlids (Figure 1). Using a test that compares the
direction of QTL effects to a neutral expectation, the authors documented strong
directional selection on the oral jaw apparatus and the dentition (Albertson et al.
2003). In 2005, Albertson and colleagues focused on the functional aspects of lower
jaw shape that represent a trade-off between the speed and force of jaw opening and
closing (Albertson et al. 2005, Hulsey et al. 2005). Importantly, they showed that
opening and closing lever systems were genetically decoupled with QTL localized
to different chromosomes. They observed that the gene bmp4 mapped to the clos-
ing lever system QTL interval (on chromosome 19) and subsequently demonstrated
greater bmp4 expression in the parental species with more robust jaws [similar to
results in Darwin’s finches (Abzhanov et al. 2004)]. Finally, they showed that bmp4
injection into zebrafish embryos was sufficient to recapitulate the lower jaw–shape
phenotype observed in cichlids. This study provided a possible explanation for the
observation that bmp4 evolves rapidly and non-neutrally among East African cichlids
(Terai et al. 2002b). Given the avid interest in modeling fish jaws as simple versus
complex biomechanical systems (Alfaro et al. 2004, Hulsey et al. 2005, Wainwright
2007), the cichlid system is ideal for further exploration in this context.

Recent work in fishes has demonstrated the complexity of dental patterning in
vertebrates. Fraser et al. (2004) showed that first-generation teeth on the oral jaw of
rainbow trout express pitx2, shh, and bmp4 in similar spatiotemporal patterns to the
mouse, suggesting the conservation of these molecules in the initiation of odontoge-
nesis since the common ancestor of fish and mammals (∼450 mya). However, not all
is conserved between mammals and fishes, or even between the oral and pharyngeal
jaws of fishes. Notably, Fraser et al. (2004) described differences in pitx2 expression
during continued morphogenesis of trout teeth, with pitx2 expression present in oral
jaw teeth but absent from pharyngeal teeth. Working with zebrafish, Laurenti et al.
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(2004) similarly demonstrated differences between pharyngeal first-generation teeth
and the oral teeth of mammals (zebrafish lack teeth on the oral jaw so no direct
comparison is possible). Specifically, the gene eve1, a member of the homeobox-
containing evx gene family, not expressed during tooth development in mammals, is
expressed during tooth initiation and morphogenesis of the first pharyngeal tooth.
Jackman et al. (2004) used chemical knockdown of FGF signaling to show that FGFs
are required for zebrafish first-generation tooth development. Furthermore, fg f8 and
pax9 were not expressed under normal conditions in zebrafish tooth germs (unlike
in mouse), and both Dlx and Lhx genes were expressed in dental mesenchyme (as in
mouse molars).

In 2003, Streelman and colleagues demonstrated that tooth number was correlated
with tooth cusp number in natural populations of cichlid fish from Lake Malawi, East
Africa (Streelman et al. 2003b). Given simple genetic control of tooth shape in this
system (Albertson et al. 2003) and the iterative role of certain genes in the stages of
tooth development (Peters & Balling 1999), these authors suggested that variation
in the expression of a single activating or inhibitory molecule might integrate tooth
and cusp number (Streelman et al. 2003b; also Plikus et al. 2005). Streelman &
Albertson (2006) subsequently identified a QTL of major effect for tooth shape on
cichlid chromosome 5, near genes for orange blotch (OB) color and sex (Streelman
et al. 2003a) (see below). Furthermore, they demonstrated, using bmp4 as a marker of
tooth initiation, that tooth number and spacing are specified earlier than tooth shape.

Much is left to learn about fish dentitions. For instance, first-generation teeth are
morphologically unlike replacement teeth (Sire et al. 2002), do not show species-
specific adult shapes, and exhibit unique gene-expression programs (Fraser et al.
2006). There is great interest in tooth replacement and its molecular mechanisms
because subsequent tooth generations may arise from stemlike cells (Huysseune &
Thesleff 2004), yet only one study to date has examined gene-expression programs
in replacement dentitions (Fraser et al. 2006). No study has investigated the molecu-
lar choreography of tooth replacement in species with adult teeth shaped differently
than first-generation teeth, and no study has examined how lingual rows of teeth are
initiated and patterned (e.g., cichlid species can have more than 15 rows of teeth on
the oral jaws). Understanding the molecules involved in the complexity of fish odon-
togenesis will shed light on the general mechanisms of periodic patterning applicable
not only to dentitions (Salazar-Ciudad & Jernvall 2002), but also to other organs such
as hair and feathers (Houghton et al. 2005).

PIGMENTATION

Pigment patterns represent one of the most extraordinary illustrations of teleost adap-
tation (Figure 2). Famous examples include coral reef fishes, cichlids of East Africa,
and aquarium favorites such as guppies and loaches. The myriad pigment patterns of
teleosts serve in a variety of roles, including warning coloration, camouflage, school-
ing, mate recognition, and mate choice (Couldridge & Alexander 2002, Endler 1988,
Engeszer et al. 2004, Jordan et al. 2003, McMillan et al. 1999, Millar et al. 2006,
Rosenthal & Ryan 2005).
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a b

d e

f g

h i j

c

D. rerio D. albolineatus

D. sp. nov.

D. choprae

L. fuelleborni (BB) L. fuelleborni (OB)L. fuelleborni (OB) L. fuelleborni (OB)L. fuelleborni (OB)L. fuelleborni (OB) L. fuelleborni (OB)

xan

irid

mel
D. nigrofasciatus

D. feegradei

Figure 2
Pigment pattern variation and pigment cells of teleosts. Shown are several species within
Danio (a–g), as well as the cichlid Labeotropheus fuelleborni (h–j), illustrating differing color
patterns associated with the absence and presence of the orange blotch polymorphism
[blue-black (BB) and orange blotch (OB), respectively). Panel c shows melanophores (mel),
xanthophores (xan), and iridophores (irid) in the D. rerio adult pigment pattern. Iridescent
iridophores are present throughout but can be seen here only where they catch the light.

Pigment Patterns Through Development

Vertebrate skin pigment cells are derived embryologically from neural crest cells,
which also contribute to craniofacial bone, cartilage, and teeth and produce most
of the peripheral nervous system (Hall 1999, Le Douarin 1999). Neural crest cells
have long been recognized as a key vertebrate innovation (Gans & Northcutt 1983),
and pigment patterns, in addition to skeletons (see above), have provided a valuable
opportunity to study the developmental and genetic factors responsible for evolu-
tionary changes in the patterning of neural crest–derived traits. In contrast to studies
of skeletal diversification, which have focused largely on particular genes and tissues,
studies of pigmentation have emphasized the cellular mechanisms of pigment pattern
development. The different emphasis reflects the notion that evolutionary changes in
gene activity are only interpretable in a cellular context (e.g., Parichy 2005) and this
cellular context has thus far been less explored for pigment patterning as compared
to skeletogenesis.

Pigment patterns reflect the numbers and arrangements of several classes of pig-
ment cells, or chromatophores. These include black melanophores, yellow or orange
xanthophores, red erythrophores, blue cyanophores, white leucophores, and irides-
cent iridophores (Bagnara & Matsumoto 2006, Parichy et al. 2006). The color of
each class of cell results from the particular pigments contained within specialized
organelles. By combining different classes of cells, different spatial arrangements of
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cells, and different pigment concentrations within individual cells, a seemingly infinite
range of patterns and colors can be produced.

Most fishes exhibit different pigment patterns during different life-cycle phases.
The first pattern to develop arises as embryonic neural crest cells disperse from above
the neural tube, differentiating chromatophores during or even prior to their migra-
tion and subsequently colonizing specific locations to generate an embryonic/early
larval pigment pattern (Kelsh 2004, Raible & Eisen 1994). Commonly this consists of
stripes of melanophores dorsally, laterally, and ventrally, with xanthophores broadly
scattered over the flank (Lamoreux et al. 2005, Quigley et al. 2004), although a variety
of other patterns also occur. The functional significance of these pigment patterns
remains unexplored.

The diversity of teleost pigmentation consists mostly of patterns expressed in the
adult. In some species, the adult pigment patterns develop during metamorphosis,
when the larval form is transformed into a juvenile by remodeling or the initial ap-
pearance of a variety of traits [e.g., fins, skin, scales, skeleton, gut, kidney, and sensory
systems (Webb 1999)]. Pigment pattern metamorphosis has been most studied in the
zebrafish, Danio rerio (Figure 2). In this species, metamorphic melanophores dif-
ferentiate scattered over the flank, and then melanophores coalesce at sites of adult
stripe formation, with additional metamorphic melanophores differentiating already
within the stripes; most embryonic/early larval melanophores die (Parichy & Turner
2003b).

Developmental changes in pigment pattern also can occur during later devel-
opment, particularly with the onset of sexual maturation, and these may be either
permanent or transient, as is the case for nuptial coloration (Beeching et al. 2002,
Dickman et al. 1988, Maan et al. 2006, Mabee 1995). To date, virtually nothing is
known about the molecular and cellular bases of pigment pattern changes within the
adult phases of the life cycle.

Genes Underlying Changes in Pigmentation

One way that teleost pigment patterns evolve is by modifying the quantity or quality
of the pigments carried by chromatophores. Two recent studies provide nice examples
of how genetic approaches can provide insights into the evolution of pigmentation
in fishes and beyond.

In Mexican tetras, Astyanax, several cave-dwelling populations exhibit a suite of
derived traits including albinism, reduced eyes, and enhancements of other sensory
systems ( Jeffery 2001, Yamamoto et al. 2004) (Figure 1). The phylogeography of
these populations is complex, although cave forms have clearly evolved repeatedly
(Strecker et al. 2004). Despite their albinism, cavefish retain melanophores (McCauley
et al. 2004), and genetic mapping identified a major effect QTL for melanin loss
(Protas et al. 2006). By mapping candidate genes associated with mammalian albinism,
researchers found a correspondence between the cavefish QTL and oculocutaneous
albinism-2 (oca2). Complementation tests showed that albinism in a second cavefish
population is associated with the same locus, and molecular analyses revealed that
each population harbors different small genomic deletions within oca2. The deletions
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are functionally significant as oca2 complementary DNA from melanized, surface-
dwelling Astyanax allows the melanization of murine oca2-deficient melanocytes,
whereas the two cavefish deletion complementary DNAs do not. This study nicely
shows how pigmentation loss can result independently from changes at the same
locus and suggests that such parallelism may reflect both an absence of pleiotropic
effects and the large size of oca2, making it a high-frequency target for selection.
These results are reminiscent of recent studies of MC1R in mammalian pigmenta-
tion (Hoekstra et al. 2006). The cavefish example also illustrates how knowledge of
pigment cell genes and development in mammals can be applied to understanding
pigment evolution in teleosts.

Knowledge of pigment development in teleosts also can inform us about the evo-
lution of pigment in mammals, including humans. A striking example is the D. rerio
golden mutant, which has reduced melanin but otherwise normal melanophores. Posi-
tional cloning identified golden as slc24a5, which encodes a sodium/calcium transporter
localized to pigment granules within melanophores (Lamason et al. 2005). Mutations
in aim1, also a transporter involved in melanin synthesis, explain a similar orange-red
medaka variant called b (Fukamachi et al. 2001). Remarkably, a polymorphism within
human SLC24A5 is associated with different pigmentation between European and
African populations, and significantly reduced heterozygosity indicates past selec-
tion at this locus. Whether variation at slc24a5 or aim1 has contributed to pigment
evolution in teleosts and other taxa remains to be determined.

Mechanistic Bases for Cellular Pattern Diversification

Beyond changes in pigment content, a major factor in teleost pigment pattern di-
versification has been changes to the numbers and arrangements of chromatophore
classes. Such variation has received extensive theoretical attention (Asai et al. 1999,
Miguez & Munuzuri 2006, Painter et al. 1999), and recent studies have started to
elucidate the underlying mechanisms, primarily using D. rerio and its relatives.

One recent insight concerns the origins of chromatophores responsible for pat-
tern diversification. Unlike embryonic/early larval melanophores that differentiate
directly from neural crest cells, metamorphic melanophores in D. rerio differentiate
from latent precursors of presumptive neural crest origin ( Johnson et al. 1995, Parichy
& Turner 2003b, Parichy et al. 2003). Mounting evidence suggests these precursors
are stem cells, able to generate differentiated progeny while themselves remaining
undifferentiated (Parichy & Turner 2003a, Yang & Johnson 2006). A sister species,
D. nigrofasciatus, exhibits superficially similar adult stripes to D. rerio, yet cell lineage
analyses reveal these stripes are formed largely by reorganizing embryonic/early larval
neural crest–derived melanophores rather than by differentiating stem cell–derived
metamorphic melanophores (Quigley et al. 2004). Thus, danios exhibit at least two
different modes of pigment pattern metamorphosis.

Analyses of danios show that cryptic but genetically distinct populations of
metamorphic melanophores differentially contribute to pigment pattern evolution
( Johnson et al. 1995; Parichy et al. 1999, 2000a,b). In D. rerio, early metamorphic
melanophores that are initially dispersed and then migrate into stripes depend on
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the kit receptor tyrosine kinase, as they are ablated in kit mutants. By contrast, late
metamorphic melanophores that develop already within stripes do so independently
of kit; i.e., they persist—in stripes—in kit mutants. As distinct populations of kit-
dependent and kit-independent melanocytes have not been found in mammals, these
cell populations might be unique to D. rerio. To test this idea, a recent study iso-
lated a kit mutant in D. albolineatus, which normally exhibits uniformly dispersed
melanophores. The mutant retained a population of kit-independent melanophores,
showing conservation of these cellular populations in at least one other danio. Strik-
ingly, and in contrast to the uniform wild-type D. albolineatus pattern (Figure 2), the
kit-independent melanophores occurred in stripes. These and other data showed that
D. albolineatus has latent stripe-forming potential, and that stripe loss in this species
occurred in part by a failure of kit-dependent melanophores to migrate into stripes,
thereby obscuring the stripes formed by kit-independent melanophores (Mills et al.
2007, Quigley et al. 2005). These studies show how a manipulative, genetic approach
can be used to deconstruct the evolution of an adult phenotype.

Studies of danios also suggest that an important factor in pigment pattern diver-
sification depends on chromatophore interactions. In D. rerio, stripes arise through
interactions between melanophores and xanthophores, and between cells within each
of these classes (Maderspacher & Nusslein-Volhard 2003, Parichy & Turner 2003a,
Watanabe et al. 2006). Genetic analyses indicate that variation in danio pigment pat-
terns likely reflect evolutionary modifications to the strength and timing of these
interactions, which appear to serve as a pattern-generating mechanism that can be
deployed at different times and in different places (Parichy & Turner 2003a, Quigley
et al. 2005). Interspecific complementation testing of candidate genes identified as
D. rerio mutants further revealed that such interactions are likely to be perturbed in
D. albolineatus—contributing to the uniform pigment pattern—owing to changes in
colony stimulating factor 1 receptor (csf1r, fms), which encodes a receptor tyrosine kinase
expressed by cells of the xanthophore lineage (Parichy & Johnson 2001, Quigley et al.
2005).

Although danios are an especially tractable system for analyzing pigment pat-
tern development and evolution, these species represent only a small fraction of
teleost pigment pattern diversity. In this regard two additional groups are especially
interesting—guppies and cichlids—both because of color pattern variation and be-
cause of the deep foundation of ecological and behavioral observations regarding
these patterns (Genner & Turner 2005, Lindholm et al. 2004, Seehausen et al. 1999).
For cichlids, a particularly exciting recent advance is the ability to map factors genet-
ically using closely related species. For instance, a QTL associated with alternative
barred and OB postmetamorphic color patterns in Metraclima zebra maps to the
vicinity of c-ski1 on chromosome 5 (Streelman et al. 2003a) (Figure 2). As rep-
resentative cichlid genome sequences become available (Table 2), identification of
this locus and other inferred genetic factors (Barson et al. 2007, Maan et al. 2006)
will provide new and important insights into pigment pattern diversification. More-
over, mechanistic studies of danios and other model organisms should provide in-
roads to understanding the cellular bases for pattern diversification in these other
species.
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Table 2 Genomic resources for model teleosts

Resource Species Web site
Cichlid Genome Consortium Cichlids http://www.cichlidgenome.org
Ensembl Zebrafish, stickleback

pufferfish, medaka
http://www.ensembl.org

JGI Pufferfish (Takifugu) http://genome.jgi-psf.org/Takru4/Takru4.home.html
Medaka home page Medaka http://biol1.bio.nagoya-u.ac.jp:8000
Genoscope Pufferfish (Tetraodon) http://www.genoscope.cns.fr/externe/tetranew/
Sanger Institute Zebrafish http://www.sanger.ac.uk/Projects/D rerio/
Stanford Genome Evolution Center Zebrafish, stickleback http://cegs.stanford.edu/index.jsp
Xiphophorus home page Xiphophorus http://xiphophorus.org
Zebrafish Information Network Zebrafish http://zfin.org

Cytogenetically visible sex
chromosome: in this
context heteromorphic
chromosomes belonging to
one sex that can be observed
by examining chromosome
squashes under a light
microscope

Pigmentation Genes Evolve Rapidly in Teleosts

A problem complementary to the evolution of pigment patterns is the evolution of
pigment pattern genes, and several recent studies have assessed naturally occurring
variation at such loci. For example, surveys of several cichlid species with diverse color
patterns found differential rates of evolution among loci and between recently du-
plicated paralogous copies, including csf1r, which is mentioned above (Braasch et al.
2006, Sugie et al. 2004). An especially intriguing example is hagoromo, which encodes
an F-box/WD-40 repeat protein that is required for metamorphic melanophore de-
velopment in D. rerio (Kawakami et al. 2000). Analyses of more than a dozen cichlid
species reveal accelerated rates of amino acid evolution in specific domains and an
extraordinary increase in the complexity of alternatively spliced hagoromo transcripts
(Terai et al. 2002a, 2003). It will be fascinating to learn how hagoromo functions in
pigment pattern development and to test its causal involvement in generating species-
specific pigment patterns.

SEX (GENDER) DETERMINATION

Sex Determination Mechanisms in Fish Are Diverse

Most developmental pathways, such as those discussed above, are well conserved
across disparate taxa. By contrast, the developmental pathways that determine sex are
strikingly variable and can even differ between closely related species. Teleost fishes
present attractive models to understand the evolution of sex determination pathways,
as the entire range of environmental and genetic sex-determining mechanisms is rep-
resented across lineages (Devlin & Nagahama 2002). For example, many fishes have
environmentally determined sex, which can depend on factors such as temperature or
social interactions. Genetic mechanisms of sex determination in fishes may be poly-
genic or simple and associated either with no cytogenetically visible sex chromosomes
or with heteromorphic sex chromosomes in either males (XY systems) or females
(ZW systems). This wide diversity of sex determination mechanisms can be found
even in closely related fish species (Devlin & Nagahama 2002, Mank et al. 2006).
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Particularly apposite examples of this diversity are found within poeciliid fishes
[guppies, mollies, swordtails, and platyfish (Volff & Schartl 2001)], salmonid fishes
(Phillips et al. 2001, Woram et al. 2003), the stickleback family Gastesteidae (Chen &
Reisman 1970), and the tilapia genus Oreochromis (Lee et al. 2003, 2004). Diversity of
sex determination mechanisms in closely related fish species supports the hypothesis
that this developmental pathway is evolutionarily plastic and that sex determination
mechanisms and sex chromosomes can evolve rapidly.

The plasticity of sex determination mechanisms in fish is highlighted by recent
work in medaka (Oryzias latipes). With the identification of a duplicated copy of the
dmrt1 gene called dmrt1bY or DMY as the medaka master sex determination locus
(Matsuda et al. 2002, Nanda et al. 2002), there was speculation that this gene would
serve a similar role in all fish, just as Sry is the master sex determination switch in
nearly all mammals (Marshall Graves 2002). Although the Dmrt gene family is widely
present in fish (Volff et al. 2003b), the dmrt1bY/DMY gene is absent from other fish
species (Kondo et al. 2003, Veith et al. 2003). In fact, although dmrt1bY/DMY is
present in a second species, Oryzias curvinotus (Kondo et al. 2004, Matsuda et al.
2003), other species within the Oryzias genus do not have this gene (Kondo et al.
2003, 2004), suggesting that dmrt1bY/DMY has arisen within the Oryzias lineage in
the past 10 million years (Kondo et al. 2004).

The enormous variation in sex determination pathways in fish presents an oppor-
tunity to understand the mechanisms by which sex determination genes arise and sex
determination pathways evolve. Remarkably, the mechanisms of sex determination
remain unknown for D. rerio, although multiple loci and environmental influences
are likely to be involved. Currently, efforts are underway to identify the master sex de-
termination genes in platyfish, tilapia, salmonids, and stickleback. This work should
identify whether there are common themes that connect the types of genes used as
master sex determination loci, as well as provide insights into the evolution of sex
determination pathways.

Sex Chromosome Evolution in Teleosts

In addition to the diversity of sex determination mechanisms in fish, there is also great
diversity in the presence of sex chromosomes. Approximately 10% of fish species have
cytogenetically visible sex chromosomes (Devlin & Nagahama 2002). However, this
is likely an underestimate of the number of fish species that have sex chromosome sys-
tems because young sex chromosome systems that are in early stages of differentiation
are unlikely to be observed by traditional cytogenetic analysis. Many closely related
species of fish differ in sex chromosome complement, suggesting that sex chromo-
somes can arise rapidly in fish. Many fish sex chromosomes are therefore likely to be
younger than the stable XX-XY sex chromosome system in mammals, which is over
300 million years old (Graves 2006). Therefore, studying sex chromosomes in fish
provides a unique opportunity to investigate the genetic and molecular events that
accompany the earliest stages of sex chromosome evolution.

After the acquisition of a sex determination locus, one of the first steps in the
evolution of a sex chromosome is the suppression of recombination around a sex
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determination locus, which has been hypothesized to occur to reduce recombination
between the sex determination locus and linked genes with sex-specific fitness effects
(Bull 1983, Fisher 1931, Rice 1987a). This suppression of recombination leaves the
heterogametic sex with one chromosome in a consistently heterozygous state, which
ultimately results in the degeneration of sex-linked loci in the heterogametic sex (Bull
1983, Charlesworth 1991, Rice 1987b). Based on these models, it is predicted that a
sex chromosome would show reduction of recombination near the sex determination
region, resulting in the loss of homology between the X and the Y chromosome,
particularly owing to the accumulation of deleterious mutations, including an increase
in transposable elements on the Y chromosome. Chromosome rearrangements may
or may not accompany these early stages of sex chromosome evolution. Recent studies
of the sex chromosomes of a number of different fish species have begun to illuminate
these processes on a molecular level and have also begun to provide insight into the
timing of events in sex chromosome evolution.

In particular, recent work in medaka fish (Kondo et al. 2006) has provided a detailed
molecular view of the events that accompany the early stages of sex chromosome evo-
lution, just after the evolution of a new sex determination gene. As described above,
the sex determination gene in O. latipes was recently identified as the dmrt1bY/DMY
gene, a duplicate copy of the dmrt1 gene (Matsuda et al. 2002, Nanda et al. 2002).
Kondo et al. (2006) cloned and sequenced the regions flanking dmrt1bY on both the
X and the Y chromosome, as well as the dmrt1 region. They found a completely
Y-specific region that resulted from a duplication of a 43-kb region of chromosome
9 that includes the dmrt1 gene. A number of repetitive elements have accumulated
within the Y-specific region, accounting for an increase in its size to 258 kb. Thus, in
this relatively young (less than 10 million years old) sex chromosome system (Kondo
et al. 2004), there is evidence for both degeneration of Y-linked sequences and accu-
mulation of repetitive DNA (Kondo et al. 2006).

It may be that the dmrt1bY/DMY locus in medaka represents a unique mecha-
nism of sex chromosome evolution. To gain insights into the general mechanisms
that underlie the evolution of sex chromosomes, it is important to analyze other sex
chromosome systems of differing ages. In fishes, there are a number of other sex
chromosome systems in species with the requisite genetic and genomic tools for this
analysis. To date, the most well-studied systems have been poeciliid fishes (guppies
and platyfish), salmonid species, threespine stickleback (Gasterosteus aculeatus), and
tilapiine cichlids (Oreochromis spp.). In most of these systems, genetic analysis has
revealed a genetic basis for sex determination even in the absence of cytogenetically
visible sex chromosomes.

There must be some differentiation between sex chromosomes in most of these sex
chromosome systems, as researchers have observed reduction in recombination be-
tween the X and the Y chromosomes near the sex determination region in threespine
stickleback (Peichel et al. 2004), blue tilapia (Lee et al. 2004), and platyfish (Gutbrod
& Schartl 1999, Morizot et al. 1991). Given the loss of recombination near sex de-
termination regions of these fish, it is not surprising that there is also evidence that
many of these systems have accumulated repetitive DNA. In tilapia, there are sub-
tle differences in the amount of heterochromatin, which consists of repetitive DNA

668 Streelman · Peichel · Parichy

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

00
7.

38
:6

55
-6

81
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 J

ef
fr

ey
 S

tr
ee

lm
an

 o
n 

12
/1

7/
07

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV328-ES38-26 ARI 24 September 2007 8:43

Sexually antagonistic
gene: a gene with a
differential fitness effect in
the sexes, so expression in
one sex is beneficial but
expression in the other sex is
detrimental

elements that have accumulated on the Y chromosome relative to the X (Griffin et al.
2002, Harvey et al. 2002). Similarly, the sex determination region of lake trout, brown
trout, and Atlantic salmon is next to a large heterochromatic block (Artieri et al. 2006,
Phillips & Ihssen 1985, Phillips et al. 2002). Sequencing of X- and Y-specific bacterial
artificial chromosome clones in threespine stickleback (G. aculeatus) and platyfish (X.
maculatus) revealed that the Y chromosomes in both species had significantly more
repetitive and transposable elements than the X chromosomes (Froschauer et al. 2002,
Peichel et al. 2004, Schultheis et al. 2006).

Beyond examining the accumulation of transposable elements, investigators have
done relatively little to explore the effects of loss of recombination at the sequence
level. That viable and fertile YY salmonid (Chevassus 1988), tilapia (Penman &
McAndrew 2000), and platyfish (Kallman 1984) males can be generated suggests
that genes required for viability and fertility on the Y chromosome have not been
rendered nonfunctional. Some sex-linked genes in platyfish appear to be pseudo-
genes; however, there are a number of duplicate copies of these genes, such that at
least one functional copy might remain (Volff et al. 2003a). There are a number of se-
quence differences between the X and the Y chromosome in the threespine stickleback
(Peichel et al. 2004); however, it is not known whether genes on the stickleback Y have
become nonfunctional or whether YY individuals can be generated in stickleback. In
the future, it will be important to compare the levels of cytogenetic differentiation
with levels of sequence divergence and to explore in more detail the molecular changes
that have occurred in the regions around a sex determination locus.

Pigmentation and Skeletal Traits Are Linked on Sex Chromosomes

Reduction of recombination around a sex determination locus appears to be a general
phenomenon in sex chromosome evolution. Theoretical work suggests that this may
result from linkage of a sexually antagonistic gene to the sex determination locus,
which would select for the loss of recombination to prevent detrimental alleles from
being expressed in the wrong sex (Bull 1983, Fisher 1931, Rice 1987a). Thus, we
might expect that there would be an excess of sexually antagonistic genes linked to the
sex chromosomes. In particular, male display traits, such as color, can be considered
sexually antagonistic traits because expression in males is beneficial, but expression
in females would be deleterious, as it might expose females to predation and incur
production costs (Bull 1983, Endler 1980, Fisher 1931). This model does not exclude
species with female display traits; in this case we might simply expect to see linkage of
female display traits to a female determining locus. In support of this model, there is
good evidence for linkage of (fe)male display traits to sex chromosomes in a number
of fish species (Lindholm & Breden 2002).

The poeciliid fish provide some of the most spectacular examples of sex linkage of
male display traits (Lindholm & Breden 2002). In guppies (which have an XY sex de-
termination system), pigmentation, fin size and shape, courtship behavior, and male
attractiveness are linked to the Y chromosome (Brooks 2000, Brooks & Endler 2001).
The Y-linked color patterns are extremely polymorphic in natural populations and dif-
fer in their attractiveness to females (Lindholm et al. 2004). Different Y-linked color
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alleles are associated with increased predation (Endler 1983) and mortality (Brooks
2000), suggesting that a balance between natural and sexual selection contributes to
the maintenance of color polymorphisms in guppy populations (Endler 1980).

In another poeciliid fish genus, Xiphophorus, a number of traits involved in male
attractiveness are closely linked to the sex determination locus on the Y chromosome
(Basolo 2006, Cummings et al. 2006, Rosenthal & Garcı́a de León 2006). As in
guppies, pigmentation loci are tightly linked to the sex determination locus and are
highly polymorphic within and between Xiphophorus populations (Kallman 1975). In
addition, the puberty or pituitary locus is tightly linked to the sex determination locus
and determines both the onset of sexual maturity (Kallman & Borkoski 1978, Kallman
et al. 1973) and reproductive tactics (Zimmerer & Kallman 1989). This locus is
also highly polymorphic, leading to alternative mating strategies within populations.
Males that mature later are robust and ornamented and have elaborate courtship
behaviors, whereas the males that mature early are small, have little ornamentation,
and perform sneaker copulations. As for color, this polymorphism is likely to be
maintained within populations owing to a balance of natural and sexual selection
(Ryan et al. 1992). Although large males are favored by sexual selection and are
preferred by females (Ryan et al. 1990), they are not favored by natural selection and
are more heavily preyed upon (Rosenthal et al. 2001), providing an advantage for
smaller and less conspicuous males.

Traits important for adaptation have been found linked to sex chromosomes in
several other fishes. Among Malawi cichlids of the genus Metriaclima, sex is deter-
mined by a locus on chromosome 7, unless the OB trait is segregating in the family,
in which case sex is under the control of a dominant female determiner linked to OB
on chromosome 5 (Streelman et al. 2003a; T.D. Kocher, personal communication).
Notably, genes for jaw shape and function map to cichlid chromosome 7 (Albertson
et al. 2003, 2005; see above), and a QTL of major effect for tooth shape maps to
chromosome 5 and is linked to the sex determination locus, as well as to genes for
coloration (OB locus) and putative color preference (opsin gene cluster) (Carleton
& Kocher 2001, Streelman & Albertson 2006). In tilapiine cichlids, a red color mu-
tant maps close to the sex-determining locus of female heterogametic species on
chromosome 3 (Lee et al. 2005). Finally, at least one skeletal trait, the size of the
opercle bone, has been mapped to the stickleback sex chromosome (Kimmel et al.
2005). These latter data provide empirical evidence for quantitative genetic models of
adaptive speciation that predict gametic association between ecological, marker, and
preference traits (Dieckmann & Doebeli 1999, Kondrashov & Kondrashov 1999) on
incipient sex chromosomes with reduced recombination.

SYNTHESIS AND PERSPECTIVE

The studies reviewed above have engendered novel insights into the developmental
genetic basis of adaptation. Conceptually, this has shifted focus toward studying how
development works in diverse and highly complex natural systems. Much has been
learned about how genes with manifold pleiotropic functions (e.g., pitx1, bmp4, shh)
can be employed specifically in an organ- or tissue-specific manner (Albertson et al.
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Gene regulatory networks
(GRNs): the sum total of
genes and their connections
that influence a biological
output, often depicted or
modeled as wiring diagrams
or logic circuits

Modularity: generally, the
evolutionary or
developmental decoupling
of components involved in
form and/or function

2005, Shapiro et al. 2004, Yamamoto et al. 2004). Less satisfying, however, is that new
genes or new gene functions have not been discovered; the genes involved in the traits
we highlight might have been predicted in the context of traditional developmental
genetics research. This is either because forward and reverse genetic screens are
so thorough that they are redundant or because investigators have thus far studied
a biased set of natural mutations [i.e., genes of large effect (Orr 1998)]. The next
5–10 years of research will address this question as new techniques (e.g., Miller et al.
2007) and improved genomic resources (Table 2) are used to investigate new traits
in more teleost lineages. In summation, we consider a major question in evolutionary
biology addressed by the studies reviewed here.

How Does Evolution Happen?

Many authors have discussed whether there are general rules governing evolution-
ary developmental biology (Carroll 2005, Gerhart & Kirschner 1997, Wilkins 2001).
Davidson & Erwin (2006) have codified such rules in terms of gene regulatory net-
works (GRNs) and the evolutionary scale of change among the components of such
networks. At one extreme are kernels, or sets of genes at the core of GRNs, that
may be conserved over long periods of evolutionary time. At the other extreme are
differentiation gene batteries (DGBs), genes involved in terminal differentiation of
tissues or structures; DGBs reside at the periphery of GRNs and might be employed
to distinguish among closely related species. In fact, Davidson & Erwin (2006) pro-
pose a “relation between the network-component class in which changes might oc-
cur and the taxonomic level of morphogenetic effects.” According to Davidson &
Erwin’s (2006; their figure 3) hierarchical scheme, all the genes responsible for adap-
tive differences among closely related fish species [ pitx1, shh, twhh, oca2, eda, bmp4, dmy
(Table 1)] should belong in DGBs. However, six of the seven are better characterized
as input/output (I/O) switches or plug-ins, both of which are classes of evolutionar-
ily conserved components of multiple developmental networks. Davidson & Erwin
hypothesize that changes in I/O switches and plug-ins explain differences at the taxo-
nomic level of class, order, or family. Only oca2 fits the definition of a DGB. So why do
the data from fish adaptations not fit Davidson & Erwin’s schema? The answer seems
to lie in the degree of modular function for these I/O switch and plug-in genes. I/O
switches and plug-ins can elicit major morphological change (because they regulate
other genes through morphogenesis, unlike DGB genes), but the modularity of their
regulation allows other pleiotropic functions of the encoded protein to remain un-
changed [e.g., fin versus jaw function of pitx1 (Shapiro et al. 2004)]. Perhaps a better
prediction is that the genes involved in adaptation among closely related species will
be those genes central to key morphogenetic processes (e.g., cell proliferation, differ-
entiation, death, and migration) whose regulation across tissue- and cell-type is highly
modular. In the language of GRNs, these are well-connected hubs, but the genes to
which they are connected may vary across tissues and from species to species. The
developmental and evolutionary flexibility of GRNs has not been examined among
closely related species, but the approach is tractable in vertebrates (Tsaparas et al.
2006).
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In summary, the next decade of research, highlighting these and other fish models,
will surely contribute important data regarding the developmental genetic basis of
adaptation. Further study fusing the power of molecular biology and genomics in
fish groups of tremendous morphological, functional, physiological, and behavioral
diversity will shape our understanding of how development works.

FUTURE ISSUES

1. Adaptation to new environments involves a wide range of morphological,
physiological, and behavioral changes. In particular, the genetic basis of
physiological and behavioral diversity has been relatively unexplored in any
system. Because the fish models highlighted in this review display enormous
morphological, physiological, and behavioral diversity, it should be possible
to use the genetic and genomic tools developed for these systems to identify
the genetic and molecular basis of any trait of interest. It will be particularly
interesting to determine whether the types of mutations, genes, and path-
ways that are important for morphological adaptation are more generally
involved in physiological and behavioral novelty.

2. As technical costs decrease, more fish lineages will become appropriate mod-
els to answer key biological questions. The richness and diversity found
among teleost fishes are nearly limitless in this regard.

3. Many future research efforts will focus on traits expressed after embryoge-
nesis or in adult life stages. New techniques and the application of standard
techniques to new situations (explant culture, tissue- or stage-specific gene
knockdown) will be required to rigorously evaluate functional associations
between genotype and phenotype.
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